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Advances in Deep Reinforcement Learning
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Issues with Deep Reinforcement Learning (DRL)
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Programmatic Reinforcement Learning

Decision Trees State Machines Programs

• Hard to represent 
repetitive behaviors

• Difficult to scale • Flexible

• Human readable

• Hard to synthesize
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LEAPS: Learning Embeddings for lAtent Program Synthesis

Grammar Environment

Dynamics

Learning a program embedding space

from a set of randomly generated programs
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Learning a Program Embedding Space



Latent Program Search with Cross-Entropy Method



Latent Program Search with Cross-Entropy Method
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Results - CEM trajectory Visualization



Zero-shot Generalization
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Zero-shot Generalization
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LEAPS Zero-shot Generalization
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LEAPS Zero-shot Generalization
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LEAPS Zero-shot Generalization
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Interpretability

Human Debugging Interface
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Takeaways

• We learn to synthesize a program as a policy 
purely from reward

• We first learn a program embedding space 
and then search for a task-solving program

• Our synthesized programs achieve good 
performance, and are more generalizable 
and interpretable



For more details...

Paper and code: clvrai.com/leaps 
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